
Code Cards
For KS3, GCSE and IGCSE

Python 3

print() 1
input() 2
"strings" 3
mathematical operators.. 4
comparison operators.... 4
while loops 5
for loops 6
range() 6
if elif else 7
functions 8
random module 8
turtle 9 & 10
tkinter basics 11
tkinter widgets 12
using images 13
importing modules 14
tuples 15
lists 16
dictionaries 17
string manipulation 18
reading text files 19
writing to text files ... 19
classes 20
 objects 21

Index

© 2015 by Chris Roffey. Except where otherwise noted, Coding Club Code Cards, is
licensed under the Creative Commons Attribution-ShareAlike 4.0 International License:
http://creativecommons.org/licenses/by-sa/4.0

© in the characters derived from Python Basics. Cambridge University Press 2012

print()

1

The print()function is very flexible:

>>> print("Hello World")
Hello World

>>> print("Hello World, " * 3)
Hello World, Hello World, Hello World,

>>> print("Hello World\n" * 3)
Hello World
Hello World
Hello World

>>> text = "Hello"
>>> name = "Mia"
>>> print(text, name)
Hello Mia

>>> print(text, "your name is", name)
Hello your name is Mia

>>> print(text, "your name is", name, ".")
Hello your name is Mia .

>>> print(text, " your name is ", name, ".", sep="")
Hello your name is Mia.

>>> print(text, name, sep=",")
Hello,Mia

>>> name = input("What is your name? ")
What is your name? Daniel

>>> print(name)
Daniel

>>> my_name = "Mia"
>>> message = "My name is " + my_name
>>> message = message + ". What is your name? "
>>> user_name = input(message)
My name is Mia. What is your name? Daniel

>>> print(user_name)
Daniel

user_age = int(input("Enter your age: "))

exit nicely
input("\n\nPress RETURN to finish.")

The input() function is not quite as flexible.
It can only accept a single string:

We can work around this though:

Ask the user for an integer:

The input()function can be used to end a program nicely
by providing this as the last line of code. Instead of suddenly
ending, this waits for the user to end the program:

input()

2

>>> my_string = "One ring to"
>>> my_string
'One ring to'

>>> my_string = my_string + " rule them all"
>>> my_string
'One ring to rule them all'

>>> my_string = my_string * 2
>>> my_string
'One ring to rule them allOne ring to rule them all'

>>> my_string = "\"Hi Mia,\" said Daniel."
>>> print(my_string)
"Hi Mia," said Daniel.

>>> my_string = '"Hi Mia," said Daniel.'
>>> print(my_string)
"Hi Mia," said Daniel.

"strings"
Strings can be added to and multiplied:

Some escape sequences:
Escape sequence What it does

\n creates a line return in a string
\t creates a tab style indent in a string
\\ allows a backslash to appear in string
\" allows a speech mark to appear in a string

Single or double quotes? You choose – but be consistent:

3

>>> 4*5
20

if a > b:
 # do something

Python understands maths. This can be used
in scripts or directly in interactive mode:

Here are some of the more useful operators:
Operator Name Example Answer

* multiply 2*3 6

/ divide (normal) 20/8 2.5

// divide (integer) 20//8 2

% modulus (remainder) 20%8 4

+ add 2+3 5

- subtract 7-3 4

** exponent (raise to) 4**2 16

comparison operators
Comparison operators are most often used in if statements:

Operator Name Operator Name

== equal to < less than
!= not equal to >= greater or equal to
> greater than <= less or equal to

mathematical operators

4

>>> n = 0
>>> while n < 3:
 print(n)
 n = n+1

0
1
2
>>>

while True:
 # code that runs until game is over goes here

 if [game over test] == True:
 break

While loops continue looping through a block
of code while a test is true:

Sometimes you might make a mistake in your code and the while
loop never becomes false. This is an infinite loop and can be
stopped by pressing CTRL-C

Other times you may want to intentionally create an infinite loop
that only stops when something happens, for example in a game.
This can be achieved by creating a while loop that is True and

using the break key word to allow your program to escape from
the loop when you are ready:

while loops

5

>>> colours = ("Red", "Orange", "Yellow")
>>> for colour in colours:
 print(colour, end=" ")
Red Orange Yellow

The for loop is most useful for looping through
items in a container data-type e.g.

for loops

6

>>> for i in range(6):
 print(i, end=" ")
0 1 2 3 4 5
>>> for i in range(2,6):
 print(i, end=" ")
2 3 4 5
>>> for i in range(2,6,2):
 print(i, end=" ")
2 4

range()
The range function takes three integer arguments:
range([start], [up to but not including], [steps])

 starts from zero if omitted required only used with both other arguments

>>> colours = ("Red", "Orange", "Yellow")
>>> for i in range(1,2):
 print(i, colours[i])
1 Orange

Putting it all together:

>>> my_number = 7
>>> if my_number > 5:
 print("My number is big.")

My number is big.

>>> my_number = 2
>>> if my_number > 5:
 print("My number is big.")
 else:
 print("My number is small.")

My number is small.

>>> my_number = 7
>>> if my_number < 5:
 print("My number is small.")
 elif my_number < 10:
 print("My number is medium sized.")
 elif my_number < 100:
 print("My number is big.")
 else:
 print("My number is huge.")

My number is medium sized.

These control statements are used with logical
operators to provide control in programs:

if elif else

7

if

else

elif

print("This is my number:", number)

 an argument another argument

def add_two_numbers(a,b):
 print(a + b)

 function name parameters

add_two_numbers(3,4)
7
 arguments

bind up arrow to the move_up() function:
 window.bind("<Up>", move_up)

import random
dice_number = random.randint(1,6)

Python has some built in functions:

To make your own functions use the def key word:

Calling the function:

Parameter and argument are often used interchangeably. Strictly
speaking, parameters are used in the function definition. When we
call a function we pass it arguments.

Calling a function from the keyboard in tkinker (Card 11):

To use the random function, first import the random module:

functions

8

random numbers:

import turtle as t

t.forward(50)

First import the turtle module.
To avoid confusion between turtle commands
and your own function names, it is often a good idea
to import the turtle module and call its commands like this:

Some great turtle commands:
Command Arguments Example

forward() or fd() distance (pixels) forward(50)

back() or bk() distance (pixels) back(50)

right() or rt() angle (degrees) right(90)

left() or lt() angle (degrees) left(90)

home() none required

(turtle to start)

penup() none required

pendown() none required

speed() 10 = fast, 1 = slow,
6 = normal
0 = fast as possible

speed(6)

pensize() line width (pixels) pensize(10)

pencolor() common colours pencolor("red")

shape() arrow, turtle, circle,
square, triangle,
classic

shape("turtle")

turtle

9

Some more turtle commands:

Command Arguments Example

circle() radius (in pixels)
extent - angle of circle
to draw

steps - number of
lines used to make
the circle (can make
polygons)

Draw pentagon
circle(50,steps=5)

fillcolor() common colours fillcolor("violet")
begin_fill() none required

(creates a start point
to fill a shape)

end_fill() none required

(creates a stop point
when filling a shape)

hideturtle() none required

showturtle() none required

color() common colours
(turtle colour)

color("brown")

setposition() x and y coords from
the origin (pixels)

setposition(50,60)

done() none required

(tells Python to stop
waiting for turtle
commannds)

see also: https://docs.python.org/3.4/library/turtle.html

turtle continued

10

The tkinter package provides a simple windowing
toolkit for your Python programs.

To create a simple, empty window:

Laying out widgets:

Using the grid layout manager some sophisticated layouts can be
achieved. Using grid() the window can be split into columns and
rows starting from top left (row=0, column=0).

from tkinter import *

Create a window and add a title:
window = Tk()
window.title("My application")

Other code goes here

Start the infinite loop which watches for changes:
window.mainloop()

from tkinter import *
window = Tk()

def bye():
 my_label.config(text="Bye bye")

my_label = Label(window, text="Hello World")
my_label.grid(row=0, column=0)

my_button = Button(window, text="Start", command=bye)
my_button.grid(row=1, column=0)

window.mainloop()

tkinter basics

11

On card 11 there was a button and a label.
Here are some other useful widgets that can be
added after window = Tk()

Add a canvas:

Add a text entry box with a label:

Add a frame:

A recipe to add a drop-down menu:

my_canvas = Canvas(bg="green", height=50, width=100)
my_canvas.grid(row=0, column=0)

Label(window, text="Name:").grid(row=0, column=0)
my_text_box = Entry(window, width=10)
my_text_box.grid(row=0, column=1)

frame1 = Frame(window,height=20,width=50,bg="green")
frame1.grid(row=0, column=0)
frame2 = Frame(window,height=20,width=50,bg="red")
frame2.grid(row=1, column=1)

options = (1,2,3)
var = IntVar()
var.set("choose:")
my_dropdown = OptionMenu(window, var, *options)
dropdown.grid()

tkinter widgets

12

cat = PhotoImage(file="images/cat.gif")

my_button = Button(window, image=cat)

from tkinter import *
window=Tk()

build a canvas:
canvas = Canvas(window, bg="beige", height=100,
 width=100)
canvas.grid(row=0,column=0)

add an image:
cat = PhotoImage(file="images/cat.gif")
canvas.create_image(20, 40, image=cat, anchor=NW)

window.mainloop()

First, images need to be loaded into memory:

Images can be added to buttons (see card 11):

Images can be added to a tkinter canvas (see card 12):

 canvas origin (0,0)

 image's NW anchor point (20,40)

using images

13

from tkinter import *

Label(window, text="Name:")

import turtle

turtle.forward(50)

import turtle as t

t.forward(50)

Modules are files or groups of files outside of
your own script.

Importing a big group of modules the easy way:

Your code can now call the methods and functions directly from
the tkinter module without identifying where the code is from:

Never do this more than once in your code as you can start to
confuse where the functions and methods come from.

Importing a module and keeping track of where the functions
are coming from:

More typing is required but it is clear which code belongs
with which module:

The best of both worlds:

It is still clear where the functions come from but less typing is
needed:

importing modules

14

>>> my_tuple = ("Mon", "Tue", "Wed", "Thu", "Fri")
>>> my_tuple
('Mon', 'Tue', 'Wed', 'Thu', 'Fri')

>>> len(my_tuple)
5

>>> my_tuple[0]
'Mon'
>>> my_tuple[2]
'Wed'

>>> my_tuple.index("Thu")
3

Tuples are the simplest and most memory
efficient container data-type available in Python.
They are used to store a group of elements
that will not change:

Tuples are created with round brackets:

Find the length of a tuple (how many items it contains)

The elements are indexed from 0:

Locate an element in a tuple:

tuples

15

>>> my_list = ["Mon", "Tue", "Wed", "Thu", "Fri"]
>>> my_list
['Mon', 'Tue', 'Wed', 'Thu', 'Fri']
>>> len(my_list)
5
>>> my_list[2]
'Wed'
>>> my_list.index("Thu")
3

>>> weekend = ["Sat", "Sun"]
>>> week = my_list + weekend
>>> week
['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

>>> my_list.append(3)
>>> my_list
['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 3]

>>> del my_list[5]
>>> my_list[3] = "January"
>>> my_list
['Mon', 'Tue', 'Wed', 'January', 'Fri']

Lists can do everything a tuple can do and more.
They are used to store a group of elements that
can change:

Lists are created with square brackets:

Lists can be combined:

Lists can be added to:

Elements can also be deleted and replaced in a list:

lists

16

>>> my_dict = {1:"b", 2:"a", 3:"r"}
>>> my_dict
{1: 'b', 2: 'a', 3: 'r'}
>>> my_other_dict = {"red":2, "green":5, "blue":3}
>>> my_other_dict
{'green': 5, 'blue': 3, 'red': 2}

>>> my_dict[5] = "t"
>>> my_dict
{1: 'b', 2: 'a', 3: 'r', 5:'t'}
>>> my_dict[5] = "g"
>>> del my_dict[3]
>>> my_dict
{1: 'b', 2: 'a', 5:'g'}
>>> len(my_dict)
3

>>> keys_list = list(my_dict.keys())
>>> keys_list
[1, 2, 5]
>>> values_list = list(my_dict.values())
>>> values_list
['b','a','g']

Dictionaries are another container data-type
but here we define the key. It is best to think of
dictionaries as unordered key:value pairs:

Dictionaries are created with curly brackets:

Adding, replacing, deleting items and finding the number of
elements in a dictionary is similar to lists:

Extracting keys and values into their own lists:

dictionaries

17

>>> string1 = ("Hello")
>>> string2 = ("World")
>>> string3 = string1 + " " + string2
>>> string3
'Hello World'

>>> len(string3)
11

>>> "e" in string3
True
>>> string3.find("l") #Only finds first instance
2
>>> string3.count("l")
3
>>> string3[1]
'e'
>>> string3.replace("e", "a")
'Hallo World'

>>> string4 = string3.upper()
>>> string5 = string3.lower()
>>> print(string3, string4, string5)
Hallo World HALLO WORLD hallo world

Strings can be treated like a container data-type:

Concatenation (adding strings):

Find the number of letters:

Find and replace letters:

Convert to uppercase or lowercase:

string manipulation

18

my_file = open("my_doc.txt", "r", encoding="utf-8")

my_list = list(my_file)

word_count=0
for line in my_file:
 words = line.split()
 for word in words:
 word_count = word_count+1
print(word_count)

my_string = open("my_document.txt").read()

my_file.close()

my_file = open("hi.txt", "w", encoding="utf-8")
my_file.write("Ça va\n")
my_file.write("André")
my_file.close()

Store a reference to a file in a variable:

(This assumes the text file is in the same folder as the script.)

Store every line of text from your file in a list:

Loop through this file a line or word at a time:

Read a text file and store its contents in a string variable:

When finished, close the file to save system resources:

This will create a new text file called hi.txt

 needed for non-ASCII characters

reading text files

19

writing to text files

class Cat:
 # constructor:
 def __init__(self, name):
 self.name = name

 # methods:
 def speak(self):
 print(self.name, "says: 'Meow'")

 def drink(self):
 print(self.name, "drinks some milk")
 print(self.name, "takes a nap\n")

Classes are like factories. Many objects can be
built from then when they are sent orders.

Classes have to be built carefully:

 Class name
 Cat Cat class plan

 Attributes
 name

 Methods

 speak Python code for the Cat class
 drink

classes

20

Create two instances of a cat
romeo = Cat("Romeo")
juliet = Cat("Juliet")

Play with Romeo
romeo.speak()
romeo.drink()

Play with Juliet
juliet.speak()
juliet.drink()

Romeo says: 'Meow'
Romeo drinks some milk
Romeo takes a nap

Juliet says: 'Meow'
Juliet drinks some milk
Juliet takes a nap

(See card 20 for the corresponding Cat class)

From one class it is easy to create many different objects :

Objects can call all the methods from their creator class:

Here is the output from playing with the cats:

objects

21

Code Cards:

The Coding Club series for KS3:

Code Cards provide indexed, quick reminders and recipes for
the Python 3 code required at KS3, GCSE and IGCSE.
Keep them in your school jacket pocket (but remember to leave
them behind during exams!)

Red cards cover material found in Coding Club Level 1 books.
Blue cards cover material found in Coding Club Level 2 books.
Green cards cover Level 3 topics, usually not required at GCSE.

These cards are available in a variety of formats.
Visit www.codingclub.co.uk/codecards for further details.

Available from:
http://education.cambridge.org or Amazon.

